

Many raw data sets – survey as well as administrative data – contain string variables that need
to be cleaned before they can be processed and analysed. Stata has a lot of functions that
greatly facilitate working with string variables.

Here is a collection of my favourite lines of code to clean string variables:

Let’s imagine we have a data set from a firm survey where firms report the destination country
for their exports. The variable that captures this information is called “destination”. As a first
step we tabulate the values of the variable and we notice that there are six distinct values for
Burkina Faso alone.

“Burkina Faso” => two spaces between “Burkina” and “Faso”

“ Burkina Faso” => First letters capitalized and a leading space

“BURKINA FASO” => All letters capitalised

“burkina faso “ => All letters are lower case and a trailing space at the end

“Burkina/Faso” => Special characters

“Burkina” => The value was truncated after the first word

1. Removing spaces

Leading, trailing, and internal spaces can easily be removed using the strtrim() and stritrim() function.
The two can even be combined in one line:

 replace destination = strtrim(stritrim(destination))

Spaces are often hard to detect when browsing data so this has become my default first line of code
whenever I start working with a string variable.

2. Harmonising capitalisation

Harmonising capitalisation is just as easy. The three main options are:

• upper(), which capitalises all letters => “BURKINA FASO”
• lower(), which converts all letters to lower case => “burkina faso”
• proper(), which capitalizes the first letter of a word => “Burkina Faso”

You can even combine them with the functions for removing spaces in one line:

 replace destination = proper(strtrim(stritrim(destination)))

DATA CLEANING ROUTINE FOR STRING VARIABLES

1

3. Removing (or altering) special characters

By tabbing or browsing the data, we might not be able to immediately detect all special characters
that are hidden somewhere in the data. The user written command charlist conveniently lists all
special characters that occur in any of the values the string variable takes (ssc install charlist):

charlist destination // lists all characters
di `r(ascii)’ // lists the ascii code for each character

Stata might not be able to correctly read all those characters and some might thus appear as boxes
in the list provided by charlist. We therefore add another line to list the characters as ascii codes.
This will come in handy in the next step. Beware that charlist can take a few minutes to run when
working with large data as it searches all values of a string variable.

We can now remove or convert all those characters using the subinstr() function.

 replace destination = subinstr(destination, “/” , “ “ , .) // replaces the / with a space
 replace destination = subinstr(destination, “&” , ““ , .) // simply removes an & sign
 replace destination = subinstr(destination, “;” , “,“ , .) // replaces a ; with a ,

As you might have noticed we first list the variable name, then the character we want to replace, and
finally the character it is replaced with. We can even specify how many of the characters we want to
replace, e.g. if it is only the first “&” of a value, we replace the . after the final “,” with a 1:

 replace destination = subinstr(destination, “&” , ““ , 1) // removes first & only

If we can’t find a certain character on our keyboard or Stata is not able to print it correctly, we can
also use the corresponding ascii code – a popular character encoding standard. To give an example,
the ascii code for “&” is 38. You can try this by typing

 display char(38)

in the command window.

Charlist automatically stores the ascii code of all characters that occur in any value taken by our
string variable and we retrieved it using r(ascii).

 replace destination = subinstr(destination, char(38) , ““ , .) // removes all & signs

replace destination = subinstr(destination, char(32) , char(44) , .) // replaces all spaces
with commas

The ascii code for a space is 32 and the code for a comma is 44.

4. Streamlining values

If values got truncated or there are different spellings for the same country name, the function strops()
can sometimes provide a quick fix. What strops() usually does is to detect the first occurrence of a
sequence of characters in a string variable. If it takes a value greater than zero this means the sequence
of characters we searched for is contained in the value – no matter the exact position. Let’s say we
want to harmonize all occurrences of “Burkina Faso” and also capture those cases where the “Faso”
has been truncated when the data was processed. We use the line

 replace destination = “Burkina Faso” if strpos(destination, “Burkina”)>0

2

Everything this line does is to replace all values that contain “Burkina” in some form with “Burkina
Faso”. Note that strpos() is case sensitive and we thus always want to run it after having harmonized
capitalisation. To give another example, some firms might have abbreviated their entries for the
Democratic Republic of the Congo. Instead of iterating through all possibilities (e.g. Dem. Rep. Congo
or Democratic Republic of Congo), we simply look for entries that contain both the sequence of
characters “Congo” and “Dem”.

 replace destination = “Democratic Republic of the Congo” if strpos(destination, “Congo”)>0 &
strpos(destination, “Dem”)>0

5. The last few lines of code

At the end of the data cleaning routine we might want to re-run the first line of code for removing
spaces. This ensures no new excess spaces have been introduced in the process, e.g. when removing
special characters.

I have mentioned this in a previous post on working with large data sets, but wanted to highlight this
here as well: the compress command. The compress command is particularly useful when working with
string variables as it can greatly reduce the amount of memory used by your data. It converts the
storage type of all your variable to the smallest type possible without losing any information AND it
conveniently coalesces values of string variables that are stored as strL (string variables with an
arbitrary length). Both steps can make a big difference. Make sure to run it just after cleaning your
string variables.

 Verena Wiedemann, DPhil candidate in Economics, St Antony’s College

08 December 2020

https://www.csae.ox.ac.uk/dphil-student/verena-wiedemann

